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A multigrid method for finding stationary solutions of the Euler equations is described and 
tested. Spatial discretization is obtained by upwind differencing. Implicit time discretization is 
applied to construct a switched evolution/relaxation (SER) scheme. The multigrid method, a 
correction scheme, accelerates the inversion of the large linear system that arises in the SER 
scheme. In a two-dimensional transonic test problem the correction scheme is used in com- 
bination with symmetric block Gauss-Seidel relaxation. Restriction is carried out by the 
addition of residuals and corresponding blocks; prolongation by the simple distribution of 
coarse-grid corrections to the tiner grid. It turns out that the total amount of work required to 
obtain a converged solution is roughly proportional to No-‘, N being the number of zones, 
both for a first-order and a second-order accurate solution. The gain in efficiency with respect 
to a single-grid scheme thereby becomes proportional to about N”“ in both cases. t!iZ 1985 

Academic Press, Inc. 

1. INTRODUCTION 

Implicit time discretization, combined with upwind space differencing, yields a 
fast and robust method for finding stationary solutions of the Euler equations. Par- 
ticularly successful is the switched evolution/relaxation (SER) scheme, which 
provides a smooth switching between explicit time integration and Newton’s 
method for finding zero values of a given function. For one-dimensional problems 
quadratic convergence can be obtained, as shown in an earlier paper [ 11. 

In two dimensions the exact inversion of the linear system arising in the implicit 
formulation is too costly. Various approximate solvers are described in [Z], 
yielding a convergence speed that is considerably better than the speed of the pop- 
ular AD1 or AF methods. 

In this paper an efficient approximate solver based on the multigrid method for 
the solution of large linear systems, the correction scheme, is introduced. An outline 
of the basic multigrid concepts can be found in [3]. Here they are formulated in the 
context of the upwind-differenced Euler equations for problems containing discon- 
tinuities (Sect. 2). In Section 3 a test problem is described: transonic flow through a 
channel with a circular bump at one wall. Numerical results for single grid and mul- 
tigrid, with first- and second-order spatial accuracy, are given in Section 4. Sec- 
tion 5 contains some conclusions and suggestions. 
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2. METHOD 

For clarity the multigrid method will be explained for a one-dimensional scalar 
hyperbolic equation. Generalization to a system of equations in one or more dimen- 
sions is straightforward and will be presented’ further on. Let the equation be: 

aw -= -g+q(w)=r(w). 
at 

Heref(w) is the flux of the state quantity w, q(w) is a source term, and T(W) is the 
residual, the function that must be made to vanish. The implicit scheme of our 
choice is the linearized “backward Euler” scheme: 

The superscript n denotes values at a time t”, while At” = t”+ ’ - t” and 
Alwn=wn+‘- w”. The spatial coordinate x is assumed to be discretized according 
to xi = (i- t) Ax. The discrete values w, of the state quantity are obtained by 
volume averaging: 

1 
wi=- s 

r, + lJ2A.t. 

Ax x, ~ 1/2Ar 
dx w(x), i=l N. ,..‘” 

The local residual T;(W) is computed, for the present purpose, by a first-order 
upwind-difference scheme on a three-point stencil: ri(w) = ri(wiP,, wi, wi+ i). The 
timestep At” is determined by 

At” = E/REV, 

(4) 

where h; is some bias to prevent division by zero. In this way the implicit scheme 
(2) becomes a SER scheme. In the initial phase of the iteration process, Eq. (4) 
guarantees that the relative variation of w  is at most of the order of E, the value of 
which is chosen in advance. If At” is small, the implicit scheme behaves very much 
like an explicit time-accurate scheme. This is a safeguard against approaching an 
unphysical solution. Once the solution is getting closer to the steady state, At” 
becomes larger and the scheme automatically switches to Newton’s method. 
Quadratic convergence can be obtained, but need not be the ultimate goal. 
Experience teaches that once the residual RES” has dropped to a level between 
10-i and 1O-3 times its original value, an explicit scheme usually loses its con- 
vergence speed. Switching to Newton’s method may provide a fast way to reach a 
level between about lop4 and 10-6, which is sufficient in most cases. Newton’s 
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method requires the solution of the linear system (2), so it pays to put some effort 
in a reasonably accurate inversion. At this point a multigrid strategy becomes 
desirable. 

The basic ingredients of a multigrid scheme are: (i) relaxation, (ii) restriction, 
and (iii) prolongation. To simplify the notation we introduce the linear system 

where f = rn. 

Lu =f, (5) 

The single-grid relaxation scheme provides an approximate solution srn according 
to: 

s m := pfm, 

Um+l ._ Urn + S”, (6) 

f m+l ;lfmeLs". 

Here 2 is an approximation to L. If the initial values are chosen to be f” = rn and 
u” = 0, then a proper relaxation scheme will converge to the exact solution 
U* = L-If: In practice, one will find an u M after M sweeps which is a reasonable 
approximation to u*, and assign this zP’ to d, w. Suitable relaxation schemes are 
described in [2]. 

The multigrid correction scheme tries to solve the linear system 

Lem=fm, (7) 

where the defect em = U* -urn. A simple restriction operation is 

R,=+(l l), (i=l,3 ,..., N-l; Z=(i+1)/2), (8) 

implying that the coarse-grid values v, are obtained by averaging the quantities vi 
and vi+ I. This is consistent with (3) if v = w  and preserves the conservation form of 
the right-hand side of Eq. (2) if v = r. The linear system (7) can now be restricted as 
follows: 

(RLJ-‘)(ReJ = (WJ + E, 
or (9) 

L e, = f, + E,. 

The subscriptfcorresponds to the fine grid and c to the coarse grid; E, is an error 
term to be specified shortly. The matrix R- ’ may be defined as 

R-‘=2RT= ’ 
0 1 . (10) 
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If both the left-hand and right-hand side of Eq. (9) are multiplied by 2, the com- 
putation off, and L, reduces to simple additions, as all the weights in (2R) and 
R-’ are equal to unity. Now RR-’ is the identity operator; the combination R-‘R, 
however, is not. In fact, the operation R-‘Ref, occurring in Eq. (9), replaces two 
neighboring values of er by their average: 

(11) 

The resulting error can be described by an operator Q = t( 1 - 1) and its 
generalized inverse Q - ’ = 2Q ‘. We have 

(12) 

so that R-‘R+ Q-lQ results in the identity operator. It follows that the error term 
in Eq. (9) equals 

EC= -RL,Q-‘Qe,. (13) 

As seen from Eq. (12), E, contains the information about the difference between 
values in neighboring zones and therefore represents a high-frequency error. As the 
defect e, is yet unknown, the error term has to be dropped from the coarse-grid 
equation (9), which is reasonable if ef only contains low-frequency components. 
This can be accomplished by using a fine-grid relaxation scheme with good high- 
frequency damping before restriction. 

An approximate solution of the coarse-grid equation Lcec =f, can be found by 
applying the relaxation scheme (6), starting with f ,” = f, and ez = 0. After M sweeps 
one obtains a approximate solution e,M, which has to be transferred to the fine grid. 
For the prolongation of any variable u, from the coarse grid to the fine grid one 
only has the conservation condition u, = t(oi + ui+ , ). In principle this leaves the 
freedom to choose a gradient in the zone Z, yielding a difference between vi and 
ui+ 1. Such a gradient could be computed on the coarse grid by a finite-differencing 
procedure, similarly as in the second-order accurate upwind-difference scheme 
described in Appendix II. However, the experiments described later showed that the 
computation of gradients reduced the number of multigrid cycles by a few, but that 
the total amount of cpu time increased. The most cost-effective way is to distribute 
e,M uniformly over the tine grid: 

ml.- A4 sf .- e, , 

u f m+1 := uT+s;t, (14) 

fTf':= f;“-Ls;r. 

Some relaxation sweeps on the tine grid can be carried out subsequently to reduce 
the interpolation error. 
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The multigrid strategy used in this paper is a simple V cycle. Of course it could 
be made as subtle as one would wish. For instance, more effort could be spent on 
solving the linear system as the solution moves into the regime where Newton’s 
method starts working. At present, however, our only aim is to demonstrate the 
utility of multigrid relaxation. 

A full V-cycle has the following stages: 

(i) Compute Y”(W) and L”(w) on the finest grid and initialize f: = r”(w) and 
24: = 0. 

(ii) Perform one or more relaxation sweeps as given by Eq. (6) to reduce the 
high-frequency error mentioned earlier. 

(iii) Restrict the presentf;” and the matrix Lr and carry out (ii) on the coar- 
ser grid. Repeat until the coarsest grid is reached. 

(iv) On the coarsest grid one has the choice between an application of the 
relaxation scheme or an exact inversion. 

(v) Prolongate the coarse-grid correction e, M to the finer grid according to 
(14). One or more relaxation sweeps must follow in order to reduce interpolation 
errors. Repeat until the finest grid is reached. 

(iv) Assign the final L$’ to d,w. 

This multigrid scheme may be generalized to a system of equations by replacing 
the scalar functions w(x, t) and r(x, t) by vector functions of x and t; thus, the local 
dr/dw becomes a matrix and L gets a block structure. The generalization of restric- 
tion (averaging) and prolongation (uniform distribution) to more than one dimen- 
sion is straightforward. For nonuniform grids it is convenient to multiply Eq. (2) by 
the local cell volume. This ensures the appropriate weighting during the restriction, 
which then reduces to a simple addition. Details for the two-dimensional case are 
given in the following section. 

3. TEST PROBLEM 

The method is tested on the two-dimensional problem of transonic flow through 
a straight channel. The flow runs along the x direction and is obstructed by a cir- 
cular arc on the lower wall. The channel has an x coordinate running from - 1.5 to 
2.5 and a y coordinate running from 0.0 to 2.0. The circular arc between x = -0.5 
and 0.5 at y = 0 has a maximum thickness equal to 4.2% of the chord. Thin airfoil 
theory is used to transfer the boundary conditions at the arc onto the flow. For 
simplicity a uniform grid with square zones is adopted. The free-stream Mach num- 
ber is chosen to be 0.85, resulting in a transonic but unchoked flow. 

In this setting the isenthalpic Euler equations in conservation form are solved for 
an ideal gas with y = 1.4: 
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aw af ag -= ----3 at ax ay 
(15) 

Here w  represents the vector of state quantities and f and g the fluxes in the x and y 
directions, respectively. The system of equations is closed by specifying the total 
enthalpy: 

H=C2/(y-l)+;(U*+fP)=H,. (16) 

In the test problem the free-stream values are chosen to be: pm = 1, c, = 1, 
UCC = 0.85, vi = 0. The bias in the timestep given by Eq. (4) can be generalized by 
letting 

RESn=~(,w;!&;~, k=l,2,3, i=l,..., N,,j=l,..., NY (17) 

with the bias h,, = 0 and h, = h, = pc. The parameter E is taken to be 1, but this 
choice is not very critical. 

For the unchoked case two boundary conditions at the inlet and one at the outlet 
should be specified. At the inlet the direction of the flow (u =0) and the total 
pressure are given; at the outlet the static pressure is specified. For the test problem 
the inlet and outlet parameters are chosen in accordance with the free-stream 
values. Boundaries at the lower and upper wall are simulated by the introduction of 
an extra zone having reflected state quantities. Further details can be found in 
Appendix I. 

The system (2) is discretized in space with the aid of flux-vector splitting to 
accomplish the upwind differencing. The split fluxes used are those proposed in 
[4], as these can be easily linearized. They are given below for completeness: 

f=f'+f-> 

1 

f'=-&(u+cJ2 2y,c, i 1 if 1~1 <ci, 
1 

V 

(18) 

if u< -c,. 
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Here ct=2y, (H--$I~), yI =(y+ 1)/(2y) and y2=(y- l)/(y+ 1). The fluxes in they 
direction are split similarly. 

Flux-vector splitting is used for the interior flow and at the lower and upper 
boundaries. At the inlet and outlet the full flux is computed from the boundary con- 
ditions and extraplolations (see Appendix I). Equation (2) multiplied by d,xd,y 
becomes 

AiiA,~ii-B~A,w,_,,j-C;5A,~i+l,j-B~A,wi,j_,-C~A,w,j+,=rij, 

r,, = -Aj Y(fZ I,j +f$ -f ii -fi”_ 1.j) 

-AiX(go+I +gfT -g,i -g&,)3 (19) 

, 

Restriction simply adds the contributions of zones (i, j), (i + 1, j), (i, j + i), and 
(i+ l,j+ 1) for i= 1, 3, 5 ,..., N- 1 and j= 1, 3, 5 ,..., M- 1, and assigns the result to 
zone (I, J) = ((i + 1)/2, (j + 1)/2) of the coarser grid. For I we obtain 

rI.J~ri.j+ri+I,j+r~,~+I +ri+I.i+l, 

and for the linear system 

(20) 

A,,J=Ai,j+Aj+l.j+A,j+, +Ai+t.j+l 

-CB:,I,,j+B:+,,i+1+~~j+Cjl;.+11 
-CB~j+,+By+,.j+1+C~j+Cr+,,jl, 

13;,=B;j+B;,+, 

‘;, = ‘f-+ 1.J + ‘:+ 1.J + 1 (21) 

B{J = B$ + BT+ I ,I 

cXJ=c&+l+cT+I,j+l. 

The right-hand side rii, if multiplied by the local volume Ai xAj y, can be considered 
as the integral along the zone boundary of the flux perpendicular to that boundary. 
This property is preserved by the restriction operator: all the flux contributions 
from the interior of the coarse zone cancel, leaving only those at the coarse-zone 
boundary. 
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The relaxation scheme used in this paper is a linearized version of the symmetric 
block Gauss-Seidel scheme, with the first sweep in the positive x and y direction 
and the second sweep in the opposite direction. A forward Gauss-Seidel sweep 
implies that in computing $’ the forward elements ST+ iJ and syj+, are assumed to 
be zero, while for the backward elements SF- l,i and s;- i the values most recently 
obtained are used. This linearized block Gauss-Seidel involves the inversion of A,, 
and a number of matrix multiplications. The combination of two sweeps in opposite 
directions results in a good short-wave dampening, for both the first-order and the 
second-order scheme [2]. 

Second-order spatial accuracy is obtained by assuming the discrete quantities pV, 
uii, and vii to be piecewise linear rather than piecewise constant in a zone. The 
linear dependence can be represented by the x and y components of the gradient. 
These are computed from differences across the zone boundaries by an averaging 
procedure that preserves monotonicity. The gradient is used to find the quantities p, 
U, and u on the zone boundary where the split flux vectors are computed. Details 
can be found in Appendix II. The linearization of the flux vectors, required for the 
implicit time discretization, is complicated. Therefore, an incomplete linearization is 
adopted by using the same Jacobians as in the first-order scheme, but computed 
from the boundary values (see Appendix II). In this way, the matrix L has the same 
structure as in the first-order scheme. Obviously, Newton’s method is not exactly 
obtained in the relaxation phase of the SER scheme, which leads to some loss of 
convergence speed. Nevertheless, it still pays to carry out the multigrid scheme, as 
will be shown in the following section. 

4. RESULTS 

The performance of the multigrid scheme was compared with that of the embed- 
ded single-grid scheme. The single-grid scheme consists of two block Gauss-Seidel 
relaxation sweeps in opposite directions, after which uC2) is assigned to A,w. The 
multigrid scheme includes two relaxation sweeps before every restriction, and two 
after every prolongation. On the coarsest grid (2 x 1) an exact inversion was 
programmed. It turned out that this exact inversion made the multigrid scheme 
very sensitive to the treatment of the boundary conditions. For instance, a version 
of the computer program with a different kind of extrapolation at the inlet and out- 
let-using the quantities p, u, and u directly instead of the characteristic variables 
(see Appendix I)-showed a convergence speed that was considerably worse with 
the exact inversion than without. Apparently, the exact inversion couples the boun- 
daries so strongly together that any deviation from the proper treatment 
deteriorates the multigrid convergence. 

The efficiencies of the multigrid and single-grid scheme can be measured by the 
usual quantity “work.” Our restriction and prolongation operators are so simple 
that the relaxation routine is the most time-consuming part of the multigrid scheme 
Therefore, the total amount of “work” can be found by counting how many times 
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the relaxation routine is applied on each grid, weighting each grid total with the 
relative grid size (number of zones divided by number of zones on the finest grid) 
and summing over all grids. Defined in this way, the unit of “work” is independent 
of the number of zones on the finest grid. 

A single-grid iteration involves two relaxation sweeps, so the amount of work per 
iteration is 2. The work involved in a multigrid V-cycle starting, for instance, from a 
32 x 16 grid, equals 4(1 + a+ &+ &) + &= 5.3. In the latter number the com- 
putational effort in restriction and prolongation is neglected. On the other hand, in 
iterating with the single-grid scheme, there is one non-linear computation of Y(W) 
per 2 work units, as opposed to one per 5.3 for the multigrid scheme. Especially for 
the second-order accurate Y”(W), the non-linear computation is more costly than the 
linear update off? in Eqs. (6) and (14). This amply compensates for the additional 
effort in restriction and prolongation. 

Besides the amount of work, the cpu time per iteration was monitored. In com- 
paring the two, one should be aware of the following efforts to keep the total 
amount of cpu time low: 

(i) The inverse of A, required in the block Gauss-Seidel relaxation scheme is 
actually computed and stored in memory, so that it can be used in all relaxation 
sweeps per iteration on the same grid. 

(ii) After a non-linear computation of r”(w), the block matrices required for 
L”(w) are not always computed. These matrices are frozen now and then, which 
avoids a new linearization, all the inversions for relaxation, and all the restrictions 
of matrices in the multigrid cycle. To control the freezing, a sequence of levels is 
defined, specifically, lo--‘, 3x lo-*, 10P2, lo-‘, 10e4, 10P6, and 0. As soon as 
RES”/RES’, defined in Eq. (17), drops below the first level, the matrices are frozen 
until the next lower level is reached. Then all the matrices are computed again and 
frozen until the following level is reached, etc. 

It may happen that RES passes through a certain level from below. Then the 
freezing is postponed for a few iteration cycles until RES drops below this level 
again. The choice of levels is somewhat arbitrary, and problem dependent. For our 
test problem, convergence histories in terms of work were practically identical with 
or without freezing. 

Convergence histories of the first-order accurate solutions are shown in Fig. 1, for 
a 16 x 8, a 32 x 16, and a 64 x 32 grid. In all cases the multigrid scheme requires less 
work than the single-grid scheme, and the gain in efficiency is more dramatic as the 
number of zones increases. Figure 2 shows the convergence of the second-order 
accurate solutions. The total amount of work has increased, due to the incomplete 
linearization of the right-hand side r”(w). 

For the quantitative analysis of the convergence results, a quantity 5 is 
introduced, 

A work 
’ = - Alog,,(RES)’ (22) 
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0 
WORK 

500 

FIG. 1. Convergence histories of the first-order accurate solutions on 3 different grids. In all cases the 
multigrid scheme is faster than the single-grid scheme. For the multigrid scheme, the total amount of 
work increases only slowly with the number of zones. 

being the amount of work required to bring the residual RES down by a factor 10. 
Table I shows the convergence data for the 3 grids, for first- and second-order 
accurate solutions, Three values of r are given: the first one is computed for the 
drop of RES from its initial value to lo-‘, the second one for the drop from lop5 
to lo-lo, and the last one for the full drop from the initial value to lo-“. The 
corresponding number of iterations is given as well. One iteration involves 2 
relaxation sweeps in the single-grid case, and a full V cycle in the multigrid case. In 
both cases, the number of iterations is equal to the number of non-linear 
evaluations of the right-hand side r”(w). The cpu time required for these iterations 
is given in seconds on an Amdahl V7B. WRF is the work-reduction factor being the 
ratio of r for the single-grid and for the multigrid scheme; CRF is the 
corresponding reduction-factor of the cpu time. 

The single-grid runs show that the work increases with the number of zones N: 
roughly as No5 for both the first-order and second-order accurate solutions. With 
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32rlE - 

FIG. 2. As Fig. 1, but for the second-order accurate solutions. Due to the approximate linearization, 
convergence is somewhat slower than in the first-order case. 

the multigrid scheme we find a dependence proportional to about iP in both 
cases, making the amount of iterations required to obtain a converged solution 
almost independent of the number of zones. For elliptic equations it is well known 
[S] that the number of iterations should be independent of N, if N is large. In the 
hyperbolic case such a result cannot be expected a priori, certainly not for solutions 
with discontinuities. Indeed, the weak dependence on N found here is encouraging. 

We end this section with Figs. 3a and 3b, showing the distribution of the pressure 
coefficient on the bottom and top wall, obtained with the first-order and the 
second-order scheme, respectively. The pressure coefficient, defined as 
cp= (P-Pco)/b,U2,, is computed from the values of p, U, and v at the wall 
obtained by zeroth-order extrapolation from the first-order solution and first-order 
extrapolation from the second-order solution. Thus, the same values are adopted as 
used for computing the fluxes at the wall, although formally one could go one order 
higher in accuracy when extrapolating towards the wall. 
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TABLE I 

Convergence Data 

Number 
of 

zones 

Single-grid Multigrid 

Order 
5 Iter. Cpu time f Iter. Cpu time WRF CRF of 

6) (s) accuracy 

16x8 20.4 51 
31.9 95 
29.1 146 

32x16 39.7 99 
16.4 191 
58.0 290 

64x32 91.8 230 
143.3 358 
117.6 588 

16x8 26.1 65 
41.8 105 
34.0 170 

32x16 41.1 119 
13.9 185 
60.8 304 

64x32 99.1 249 
142.7 357 
121.2 606 

7.1 
11.1 
18.2 

44 
78 

122 

380 
558 
938 

10.9 
15.1 
26.0 

68 
96 

164 

520 
713 

1233 

7.2 7 3.1 2.8 2.3 1st 
8.4 8 2.2 4.5 4.9 
7.8 15 5.3 3.7 3.4 

11.6 11 14 3.4 3.2 1st 
11.6 11 11 6.6 7.2 
11.6 22 25 5.0 4.9 

13.8 13 65 6.6 5.8 1st 
12.6 12 48 11.4 11.6 
13.2 25 113 8.9 8.3 

16.7 16 6.0 1.6 1.8 2nd 

19.8 19 5.3 2.1 2.8 
18.3 35 11.3 1.9 2.3 

21.2 20 26 2.2 2.6 2nd 
31.4 29 32 2.4 3.0 
26.3 49 58 2.3 2.8 

26.9 25 128 3.3 4.1 2nd 
23.0 22 94 6.2 7.6 
25.0 47 222 4.8 5.6 

1.0 

-CP 

0.0 

1.0 

-CP 

0.0 

-0.8 -0.8 
-1.5 X 2.5 

FIG. 3. (a) Pressure coefficient on bottom ( + ) and top wall ( x ) for a 4.2% circular arc and a free- 
stream Mach number 0.85, as computed from the first-order solution on a 64 x 32 grid. Thin-airfoil 
theory is applied to transfer the boundary conditions to the flow; (b) As in (a), but computed from the 
second-order accurate solution. 
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5. CONCLUDING REMARKS 

It has been demonstrated that the multigrid technique can be successfully applied 
to compute a stationary transonic solution of the Euler equations. For the two- 
dimensional test problem the gain in efficiency with respect to a single-grid scheme 
is of the order P4, where N is the total number of zones. Consequently, the num- 
ber of iterations required to obtain a converged solution, whether first- or second- 
order accurate, increases only slowly with N: roughly as fl’. This result certainly 
justifies the additional effort of coding the multigrid scheme, which does not require 
more programming effort than a line-solver, even in FORTRAN (see [6]). 

While these results are encouraging, two important issues must still be addressed. 
The first one is: how to go through the initial phase of the iteration process? The 

searching phase of the SER scheme is almost explicit and the multigrid scheme 
solves the linear system (2) more accurately than is necessary. A single-grid solution 
would suffice. For our test problem the searching phase only takes a few iterations, 
but for a more difficult problem this phase may take much longer. In that case it 
would be more efficient to use a single-grid scheme until the residual has dropped 
to, say, a fraction 10e2 of its original value. One could also make successive grid 
refinements to speed up the searching phase. 

The second issue is: the choice between saving on storage and saving on cpu 
time, which are mutually exclusive. The linearized block Gauss-Seidel relaxation 
scheme is very efficient, but requires the storage of all the necessary matrices. An 
alternative would be to change from a correction scheme to a full approximation 
storage (FAS) scheme [3]. The Gauss-Seidel scheme could then be implemented 
non-linearly and would require only the computation and inversion of the local 
main-diagonal block A, (see Eq. (19)). 

A FAS scheme for the Euler equations has been successfully applied by Jameson 
[7]. His relaxation scheme is a four-stage method of the Runge-Kutta type, involv- 
ing four non-linear updates of the residual per step but no matrix evaluations. In 
consequence the method requires little storage. The multigrid scheme by Ni [9] 
(see also [lo]) does not exploit the full capacity of the multigrid technique, but 
merely helps to communicate local corrections to the solution through the entire 
computational domain. A symmetric non-linear Gauss-Seidel scheme has the same 
effect and probably performs just as well, without the use of multiple grids. To 
make such a scheme as simple as Ni’s, the matrix A, in Eq. (18) can be replaced by 
its spectral radius; this, however, will result in a slow-down of the convergence. The 
off-diagonal matrices are not needed in a non-linear formulation. For a vectorized 
version one could use a checkerboard instead of a Gauss-Seidel scheme. Finally, we 
mention the work by Jespersen [S] that is based on the same ideas as the present 
method, i.e., upwind differencing through flux-vector splitting and linearized 
Gauss-Seidel relaxation. His scheme, however, adopts a nodal-point approach, 
whereas we use a finite-volume discretization with corresponding restriction and 
prolongation operators. His use of non-differentiable split fluxes might cause 
problems (see [ 11). It is not clear whether his scheme can provide convergence 
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down to machine-zero or just to a level comparable to the discretization error. In 
the latter case, the numerical solution may still contain a systematic deviation from 
the steady state. 

It is our hope that the present paper will contribute to the standard use of the 
multigrid technique in computing stationary solutions of the Euler equations, either 
in the form of a correction scheme or a FAS scheme. As the computational effort 
becomes less important, one may concentrate more on accuracy, for instance, by 
introducing a more sophisticated spatial discretization of the equations or by 
implementing adaptive grid refinement. 

APPENDIX I: BOUNDARY CONDITIONS 

The test problem requires a separate treatment of the boundary conditions at the 
inlet, at the outlet, and at the lower and upper wall. At the inlet the direction of the 
flow (vi = 0) and the total pressure p0 are given; at the outlet the static pressure pr is 
specified. The other state quantities at the boundary are obtained by extrapolation 
from the interior solution. 

The natural variables for extrapolation are the characteristic variables. For the 
isenthalpic Euler equations used in our test problem the eigenvalues of df/dw and 
the corresponding characteristic variables are 

;i,=u-c~:dJ~=~-~-(y-l)~=~-~ (AI.la) 

1, = u: dJ2& 
c’ 

(AI.lb) 

(AI.lc) 

Here p = pc2/y = pc + c- is the pressure, and the modified velocities of sound are 
given by 

C += -y324 + (c’/y + y:u2p2, (AI.2a) 

c- = y3u + (c’/y + y:u2p2, (AI.2b) 

with y3 = y1 yZ = (y - 1)/(2y). From dg/dw similar expressions arise. 
At the inlet the boundary values p,, u,, o, are computed from four conditions: 

(i) the total enthalpy: H = cf/(y - 1) + ~(uF + of); 
(ii) the total pressure: p,, =p,{ (y - l)H/c:} y’(Y-l); 

(iii) the direction of the flow: u, = 0; 

(iv) one outgoing characteristic: d,J, = Alp/p - A,u/c . 

The boundary values are denoted by a subscript 1, the average values in the zone 
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next to the boundary have no subscript. The difference A,a = a - a, for any variable 
a. In a first-order accurate scheme we set A,J, = 0; for a second-order scheme A,J, 
is taken equal to half the difference of AJ, over the other side of the zone: A,J, = $ 
(AJ, )* _ 1,2,j for any j (see Appendix II). If the conditions (i) and (ii) are linearized, 
the following linear system of equations is obtained: 

2c 
uA,u+vA,u+ -A,c=O, 

Y-l 
(AI.3a) 

A,v=v, (A1.3~) 

From this it follows that 
(u’- UC_ A,J,) 

pI=p+p (1 +y(zG/c’)) 
(AI.4) 

Condition (ii) now can be used to compute c: and by (i) and (iii), U, is found. 
Finally, the density p, = yp,/cf . 

The implicit time discretization requires the linearization of the flux fi with 
respect to the conserved state quantities w  in the interior zone. The only depen- 
dence offi on w  is through Eq. (AI.4) so we take 

4ft 4 dp, 4 4 
-=-.-z-.- 

dw dp, dw dp, dw ’ 
(AM) 

At the outlet the static pressure is specified and there are two outgoing charac- 
teristics. We now have the conditions. 

(i) total enthalpy: H = cf/(y - 1) + +(~f + uf ); 

(ii) static pressure: pr =p, = l/y; 

(iii) A,J, = A,v/c; 

(iv) A,J,=A,p/p+A,u/c+. 

The values at the boundary are denoted by the subscript r, the values in the zone 
next to the boundary have no subscript, and the difference A,a = a, - u for any a. 
Again we set A,J, = A,J, = 0 for the first-order scheme and extrapolate for the 
second-order scheme. We readily obtain 

u,=u+c+ 

(AI.6) 

v,=u+cA,J,. 
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From these values cz follows by condition (i) and pr = yp,/cf. For the derivative of 
the flux f, with respect to the internal state quantities w  we neglect the derivatives of 
c+, A,J2, and A,J,. 

At the lower and upper wall the boundaries are simulated by the introduction of 
an extra zone having reflected state quantities, 

P’ = p, 
zi = u, 

u’= -u+2utancc. 

(AI.7) 

Here p, U, and u are the quantities in the interior zone next to the boundary, 
whereas the primed quantities are the reflected ones. The angle CI denotes the local 
angle of the wall with respect to the horizontal axis, which is zero except at the arc. 
From the primed quantities the split flux is computed and its linearization is found 
by using (AI.6). 

APPENDIX II: SECOND-ORDER ACCURACY 

Second-order accuracy in space can be obtained by assuming a set of basic quan- 
tities to be piecewise linear rather than piecewise constant [ 111. The distribution of 
a quantity q in zone (i, j) can be described by 

dt, v) = qij+ WA,+ v(A,dll, 

x-x.. 
(AII.l) 

4= rl 
Aix ’ fl=y-yu 

AjY ’ 
ItI <t, I?1 -ct. 

The x and y components A,q and A,q of the gradient within a zone can be found 
from neighboring values by finite differencing and averaging with a procedure that 
preserves monotonicity. It has been found in an earlier paper [ 11, that the differen- 
ces of the characteristic variables (given by Eqs. (AI.l) for our test problem) are 
best suited for the determination of gradients. The computation of the x component 
of the gradient is described below. For the y component similar results are 
obtained. 

In a given zone (i, j) the x component of the gradient can be found by first com- 
puting the differences AJ, (k = 1, 2, 3) across zone boundaries, for instance, 

(P,i-Pi-l,j) Cue- ui- 1.1) 
(AxJ1)i-1’2’j=(1/2)(p~+pilJ)-(1/2)(C~~+c~i~~,j)’ 

(AII.2) 

Here we have assumed an equidistant grid. The obvious way of determining a= 
(A,J,), from A_ =(A,Jl)i-,,2,j and A+ E(A,J,)~+,,~,~ would be a=i(A+ +A+), 
but this leads to oscillations at the foot or head of a discontinuity. To preserve 
monotonicity near discontinuities, the value of 1 has to be limited to O( Ax) [ 111. 
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A smooth switch due to Van Albada [12], is given by 

JcA+(@- +a+d-(A: +&;) 
(At +&:)+(A: +&;) . (AII.3) 

It adopts the arithmetic mean of A- and A+ in smooth regions, but tends to the 
smaller of the two in the neighborhood of discontinuities. The bias E, prevents 
division by zero and may be tuned to prevent the clipping of smooth extrema. It is 
recommended to use such a smooth switch rather than a non-smooth one. The lat- 
ter kind might cause problems during convergence. 

In our test problem we used the L,-norm of AJ, and AyJk (k = 1, 2, 3) to deter- 
mine an optimum value for E,, resulting in E, = 0.08 Ax for all our second-order 
runs (note that Ax = Ay). This value was determined a posteriori. For practical pur- 
poses the optimum value of E, could be determined at several stages of the iteration 
process, for instance, just before the freezing of the linearization as described in Sec- 
tion 4. 

At the lower and upper wall the differences across the boundary are computed 
with the aid of the reflected quantities. At the inlet and outlet the procedure 
described in Appendix I is followed. 
The dlfferenc~4 Jdi + l/2,i and (A,Jk)i,j+ 1/2 are averaged by (AII.3) to find 

(A,Jk)i,j and (d,Jk)i,j, which are then transformed into gradients for p, U, and u 
through Eqs. (AI.la)-(AIlc). We have thus obtained all the numerical values 
required to evaluate (AII.l ), for q = p, u, or U. 

For the computation of the split fluxes at the zone boundaries we now can use 
(AII.1) instead of zeroth-order extrapolation. For the x direction we obtain 

pi_+ I/Z,., = pij f tkf,~),, 

ui+1/2,,=~~~~(Axu)~. (AIIA) 

These values are used to compute the split fluxes at the zone boundaries: f;‘, 1,2,j = 
f*(Pi+ 1/2,j9 ui* 1/2J3 ui+ 1,Z.j). 

The quantities (&‘/&v)~+ L,2,,, needed in scheme (2), are computed only 
approximately. Their dependence on wi, wi_ 1, and wi+ , is simplified by assuming 
that 

(AII.5) 

as in [ 11. This incomplete linearization yields a linear system of the same form as 
for first-order space differencing, i.e., the block-pentadiagonal form (19). For large 
At, however, the second-order scheme does not turn into Newton’s method, imply- 
ing some loss of convergence speed. 
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